
Carnegie Mellon University
~ Software Engineering Institute

Principles for Evaluating the Quality Attributes

of a Software Architecture

Mario R. Barbacci

Mark H. Klein

Charles B. Weinstock

March 1997

Technical Report
CMU/SEI-96-TR-036
ESC-TR-96-036

***n**

\WBl w

a

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-96-TR-036

ESC-TR-96-036
March 1997

Principles for Evaluating the Quality Attributes

of a Software Architecture

Mario R. Barbacci

Mark H. Klein

Charles B. Weinstock

Attribute Tradeoff Analysis Initiative

«3 4

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
graTd provided the copyright and "No Warranty" statements are included with all reproductions and derivative

works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
STOWSKSMDNA¥"AS IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
SSSFSYHND i^REXPRESSEDORIMPLffiD.AS TO ANY MATTER INCLUDING,BUTNOT
ESSDTO SSTOF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY OR
RisULTS OBTASED^FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
N^T^KE ANYTARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0O03 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Suite C201, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is

http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Introduction 1

2 Overview of the Principles 3
2.1 Information-Gathering Techniques 4
2.2 Attribute-Specific Analysis Techniques 6

3 The Identification of the Contract 9

4 The Identification of the Software Architecture 11
4.1 Structure 11
4.2 Behavior 11

5 The Identification of the Hardware Resource Allocation 13

6 The Analysis 15
6.1 Example Analysis 15

6.1.1 Reliability Analysis 15
6.1.2 Throughput Analysis 17
6.1.3 Worst-Case Latency Analysis 17

7 System Profiles and Software Architecture Trade-offs 19
7.1 Conflicts Between Attributes 19
7.2 System Profiles 20
7.3 Need for Representative Examples 21

8 Conclusions 23

References 25

Appendix A Example Scenarios, Questionnaires, and Checklists 27
A.1 Fault Propagation Paths 27

A.1.1 Failure Types 27
A. 1.2 Pattern of Failure 28
A. 1.3 Detection Actions 28
A.1.4 Containment and Recovery Actions 28

A.2 Service Paths 29
A.2.1 Resource Consumers 30
A.2.2 Resources 31
A.2.3 Resource Allocation/Mapping 31

Appendix B Glossary of Quality Terms 33

CMU/SEI-96-TR-036 i

CMU/SEI-96-TR-036

List of Figures

Figure 2-1: Information Gathering and Analysis
Figure 2-2: Components and Connections
Figure 2-3: Properties of the Evaluation Approaches
Figure 6-1: Reliability Block Diagram
Figure 7-1: Effect of Change on One Attribute
Figure 7-2: Effect of Change on Multiple Attributes
Figure 7-3: System Profiles and Architecture Trade-offs

3
4
5

16
19
20
21

CMU/SEI-96-TR-036

jv CMU/SEI-96-TR-036

Principles for Evaluating the Quality Attributes of a Software Architecture

Abstract: Software quality is the degree to which software possesses a
desired combination of attributes (e.g., reliability, interoperability). In this paper
we describe a few principles for analyzing a software architecture to determine
if it exhibits certain quality attributes. We show how analysis techniques
indigenous to the various quality attribute communities can provide a
foundation for performing software architecture evaluation. We also show how
the principles provide a context for existing evaluation approaches such as
scenarios, questionnaires, checklists, and measurements. Our immediate goal
in identifying these principles for attribute-based architecture evaluation is to
better integrate existing techniques and metrics into software architecture
practice, not necessarily to invent new attribute-specific techniques and
metrics. A longer-term goal is to codify these principles into systematic
procedures or methods for architecture evaluation. This paper is an initial step
towards identifying the ingredients of such methods.

1 Introduction
Software quality is the degree to which software possesses a desired combination of attributes
(e.g., reliability, interoperability) [IEEE-1061]. Software quality is one of three user-oriented
product characteristics: quality, cost, and schedule. Cost and schedule can be predicted and
controlled to some extent by mature organizational processes. However, process maturity
does not translate automatically into product quality. Software quality requires mature technol-
ogy to predict and control quality attributes. If the technology is lacking, even a mature orga-
nization will have difficulty producing products with predictable performance, dependability, or
other attributes.

Quality, cost, and schedule are not independent. Poor quality eventually affects cost and
schedule because software requires tuning, recoding, or even redesign to meet original re-
quirements. Cost and schedule overruns are common because serious problems are often not
discovered until the system integration phase.1

Few would disagree that it is more cost effective to detect potential software quality problems
earlier rather than later in software development. Recently, the software architecture has re-
ceived attention as being the right focal point for the detection of aberrations in software

1- Horror stories that illustrate the problem are not uncommon. "On Monday, September 2, 1991, at 9 a.m., a $6
million manufacturing support systems/network integration program went live, the largest computer project the
company had undertaken. By 10:30 a.m., The system had miserably failed,' reported the program manager of
a chemical company. 'We had not anticipated needing so much memory, consequently, the system froze in less
than two hours, stopping all work at the site'" [Slavin 93]. The quickness of the disaster suggests that the de-
signers were flying blind, so to speak, throughout the development of the system.

CMU/SEI-96-TR-036 l"

quality; the creation of the software architecture is the right time start analyzing software qual-
ity and the software architecture is the right artifact to analyze [Abowd 96].2

In this paper we describe a few principles for analyzing a software architecture to determine if
it exhibits certain quality attributes. We show how analysis techniques indigenous to the vari-
ous quality attribute communities can provide a foundation for performing software architec-
ture evaluation. We also show how the principles provide a context for existing evaluation
approaches such as scenarios, questionnaires, checklists, and measurements [Abowd 96].
Our immediate goal in identifying these principles for attribute-based architecture evaluation
is to better integrate existing techniques and metrics into software architecture practice, not
necessarily to invent new attribute-specific techniques and metrics. A longer-term goal is to
codify these principles into systematic procedures or methods for architecture evaluation. This
paper is an initial step towards identifying the ingredients of such methods.

This paper presents a brief overview of a set of principles for performing quality attribute-based
architecture evaluation, illustrates attribute specific analyses, suggests the notion of architec-
ture trade-offs based on attribute profiles, and concludes with a summary of the implications

of this work.

There is no agreement on the definition of architecture. For example, in some communities, the artifact that we
refer to as the "architecture" is referred to as the "design" and an architecture is a higher level abstraction from
which many designs could be derived.

CMU/SEI-96-TR-036

2 Overview of the Principles
In this section we provide a brief description of the principles: the identification of the contract
between the system and the environment, the identification of the software architecture, the
identification of the hardware resources allocated to the software components, and the analy-
sis of the information gathered by application of the previous principles. Figure 2-1 illustrates
the relationships between the types of information needed for the analysis and the recursive

nature of this analysis.

Contract

Environment

System

Hardware resource allocation

Software architecture

(a) Information needed for the analysis

Environment System

<=>

Obligations and
expectations
between a system
and its environment

o

I o
U

3
t/3
>>

s
1/1

e „
a <u
o 3

O 03

CD Software component(s)

^=5?0
*-<=>
«N.O

Software subsystem(s)

<=> ^ CD

\ , I Hardware resources allocated to
components and subsystems

(b) Recursive analysis to compose attributes and verify contract

Figure 2-1: Information Gathering and Analysis

We will use the system depicted in Figure 2-2 to illustrate the principles underlying an attribute-
based architecture evaluation. In this system, three components process input data from the
environment and pass their results to a fourth component. The last component in turn sends
results back to the environment. For purposes of illustration, we will concentrate on three qual-
ity attributes: reliability (the probability that the system will continuously provide outputs over
a specified amount of time), worst-case latency (the time elapsed between the arrival of an
input to the system and its corresponding output to the environment), and throughput (the sys-
tem output rate).

CMU/SEI-96-TR-036

Environment^ System I V^—^N^

[p""""' ^^fpTy^ Voter
V y^^*-^. I Participants

L — — — — — — —

Figure 2-2: Components and Connections

2.1 Information-Gathering Techniques

Quality is relative to the intended use of the system. An evaluation of quality must take into
consideration the environment surrounding the system in addition to the system itself. The sys-
tem can be decomposed and any of its parts can be subject to the analysis. Everything outside
of the current focus of interest constitutes its "environment/Therefore the environment is strict-
ly relative to the system being evaluated at the moment and will change as the system chang-

es.

The system typically consists of software and hardware components. For our purposes, we
differentiate between these two types of components to focus on the architecture of the soft-
ware components—i.e., the software architecture. We use the terms subsystem and compo-
nent to refer to the building blocks of a system.3 A subsystem is made up of smaller
subsystems or components; a component cannot be decomposed.

The system and its environment are partners in a "contract" where the system and the envi-
ronment both have expectations of each other and where both have obligations to meet these
expectations. The expectations of each party must be consistent with the obligations of the
other party. The principle of "design by contract" is described by Jezequiel and Meyer [Jeze-

quiel 97] as

the principle that interfaces between modules of a software system — specially
a mission-critical one — should be governed by precise specifications, similar
to contracts between humans or companies. The contracts will cover mutual
obligations (preconditions), benefits (postconditions), and consistency
constraints (invariants).

Jezequiel describes the Ariane 5 launcher crash that was caused by a software error—the lack
of a precise specification of a reused module [Jezequiel 97]. Although the focus of the article
(and preceding articles in the same column) is on object technology and reuse, the concept of
design by contract is applicable to a broader class of software engineering situations.

3- Subsystem/components are relatively neutral terms to describe the structure of a system. The term "process"
might be loaded with implications about number of threads of control or processor allocation. A sub-
system/component can have any number of threads and can use any number of processors.

CMU/SEI-96-TR-036

Scenarios, checklists, and questionnaires are qualitative techniques applicable to the identifi-
cation of the contract, the hardware resource allocation, and the software architecture. When
conducting an evaluation, one or more of these techniques might be applied, depending on
the environment and the system. The appendix illustrates the use of these techniques for iden-
tification of fault propagation paths and resource utilization. A comparison of techniques
across a number of dimensions is summarized in Figure 2-3.

Review Method Generality Level of Detail Phase What is Evaluated

Questionnaire general coarse early
artifact
process

Checklist domain-specific varies middle
artifact
process

Scenarios system-specific medium middle artifact

Metrics
general or domain-

specific
fine middle artifact

Prototype,
Simulation,
Experiment

domain-specific varies early artifact

Figure 2-3: Properties of the Evaluation Approaches3

a. This table is taken from Abowd et al., Recommended Best Industrial Practice for Software Architecture
Evaluation [Abowd 96].

Traditional categories of engineering design knowledge can be useful in identifying the infor-
mation needed for the analysis. Vincenti defines several categories of knowledge, of which the
following two are specially relevant: fundamental design concepts, and criteria and specifica-
tions [Vincenti 90].4

• The fundamental design concepts are the operational principle and normal configuration.
The operational principle defines how the device works: it defines the device and provides
criteria for (technical) success. The normal configuration is the shapes or arrangements
that are commonly agreed to best embody the operational principle. "Every device
possesses an operational principle, and, once it becomes an object of normal every day
design, a normal configuration. Engineers doing normal design bring these concepts to
their task usually without thinking about them" [Vincenti 90, page 210].

The rest of Vincenti's categories (theoretical tools, quantitative data, practical considerations, and design in-
strumentalities) are more relevant to what we cover under analysis.

CMU/SEI-96-TR-036

• The criteria and specifications are specific, quantitative goals of the design, couched in
concrete technical terms, appropriate to the device and its use. During the learning phase
of a technology the criteria might be unknown or only partially understood; sometimes
they are obvious, sometimes they must be devised consciously, sometimes they are
obscure and require great effort and time. "Translation of the utilitarian, usually qualitative,
goals of a device into concrete technical terms — and the knowledge required to do it —
are critical for engineering design" [Vincenti 90, page 212].

Similar concepts are emerging in the software engineering literature. Shlaer describes a "re-
cursive design method" that requires greater precision in the specification of all system com-
ponents and relies on automation to produce and assemble these components into the final
system [Shlaer 97]. The article characterizes the construction of an architecture as an expert
process that, although not understood in detail, could be partitioned into a set of key activities.
Although the focus of the article is on object-oriented analysis and synthesis, the first three
activities are applicable to a broader class of software engineering situations.

• Characterize the system — "This step elicits those characteristics of the system that
should shape the architectural design. [A questionnaire] helps to focus the activity and
ensure that all issues are addressed. This questionnaire emphasizes fundamental design
considerations regarding size, memory usage, data access time, throughput,
identification of critical threads, response time, and the like" [Shlaer, page 63].

• Define conceptual entities — "This step defines and describes precisely the conceptual
entities of the architecture and the relationships that must hold among them." "Which
objects appear on an OIM [Object Information Model] depend on the concepts inherent in
the architecture under construction" [Shlaer, page 66].

• Define theory of operation — "This step describes precisely how the system works as a
whole. We have found that an informal but comprehensive theory-of-operation document
or technical note works well to develop the appropriate concepts. This document should
describe the threads of control that run through the architecture domain, covering all
modes in which the system operates, such as normal system operation; cold-start and
initialization procedures; warm-start, restart, and failover operation, as required for the
delivered system; and shutdown" [Shlaer, page 67].

2.2 Attribute-Specific Analysis Techniques

Depending on the quality attributes of interest, the evaluators can use different qualitative and
quantitative techniques to conduct the analysis. These techniques have evolved in separate
communities, each with its own vernacular and point of view [Barbacci 95]. Some of the terms
and definitions used by these communities can be found in Appendix B on page 33.

Reliability and risk analysis are multi-disciplinary subjects and a number of practical methods
are used in routine engineering activities [Modarres 93]. Some of these techniques are appli-
cable to software development. In dependability, qualitative fault forecasting is aimed at iden-
tifying, classifying, and ordering the failure modes, or at identifying the event combinations
leading to undesirable events. Quantitative fault forecasting (mainly modeling and testing) is
aimed at deriving probabilistic estimates of the dependability of the system. For example, re-

CMU/SEI-96-TR-036

liability growth models [Laprie 90] are aimed at performing reliability predictions from data rel-

ative to past system failures.

In safety, the focus is not the system failure but its consequences on the environment—i.e., the
hazard. Hazard identification attempts to develop a list of possible system hazards before the
system is built. Following the identification of a hazard, a hazard analysis process is used to
develop a risk mitigation plan. Hazard identification techniques include brainstorming, consen-
sus techniques (e.g., delphi and joint application design), and hazard and operability analysis
(HAZOP). Hazard analysis techniques include fault tree analysis (FTA), event tree analysis
(ETA), failure modes and effects analysis (FMEA), and failure modes effects and criticality
analysis (FMECA). All of these techniques are standard practices in other engineering disci-
plines and are being adopted and customized for software development (e.g., HAZOP

[Chudleigh 95, MOD 95]).

In security, analysis techniques include formal methods (verify that the design of the system
meets the requirements and specification of the security policy), penetration analysis (stan-
dard attack scenarios to determine if the system is resilient to these attacks), and covert-chan-
nel analysis (to determine the bandwidth of any secondary data channel that is identified in

the system).

In performance, analysis methods have grown out of two separate schools of thought: queue-
ing theory and scheduling theory. Queuing analysis is mostly concerned with average case ag-
gregate behaviors. When worst-case behavior is of interest, scheduling analysis might be
more appropriate. Formal methods include various forms of timed logic systems [Jahanian 86]
or timed process algebras, for example.

CMU/SEI-96-TR-036

CMU/SEI-96-TR-036

3 The Identification of the Contract
This principle requires that the evaluators identify the expectations and obligations of the sys-
tem. This type of analysis is not inconsistent with the notion of a discovery evaluation in which
the incipient architecture specifications are checked against requirements (reviewed in
[Abowd 96]).

There are different types of attributes. Some are measured by system activities (e.g., latency,
availability), some are measured by inspection activities (e.g., coupling, cohesion), and some
are measured by user activities (e.g., time to complete a task). In addition, depending on the
attributes of interest, the environment might be an operational environment (e.g., networks, us-
ers), a development environment (e.g., life-cycle organizations), or a policy environment (e.g.,
laws, institutional regulations). These cover a lot of ground. For the evaluation to be meaning-
ful, expectations and obligations must be observable and measurable.

System obligations and expectations are written in the form of scenarios. These scenarios are
short descriptions of a requirement, an operational situation, a modification to the system, etc.
The following are illustrative examples of scenarios identified from a contract:

The environment depends on data from the system and expects no more than 1 hour of
system down time in a year (minimum availability requirement).

The system failure rate is less than one failure/month (minimum reliability requirement).

The environment expects the response time or latency of the system to be less than 100
milliseconds (worst-case latency requirement).

The system must process up to 20 input events per minute (throughput requirement).

The system can resist overflooding by excessive rate of input events (security against a
type of attack).

The environment expects the system to allow processor and network upgrades
(modifiability of resources).

The environment provides inputs with exponentially-distributed arrival times with arrival
rate X.

The scenarios define what needs to be confirmed by the analysis.

CMU/SEI-96-TR-036

^ ~" CMU/SEI-96-TR-036

4 The Identification of the Software Architecture
A software architecture is characterized by a particular combination of software components
and connections. This principle requires that the evaluators identify the components and con-

nections within the system.

There are different kinds of connections between components: structure, the component con-
nections showing the flow of data, and behavior, the underlying semantics of the system and
the components, including the flow of control. Knowledge of the operational principle and nor-
mal configuration [Vincenti 90] are essential to the identification of the architecture.

4.1 Structure

In this example, three components (the "participants") process inputs from the environment.
Their outputs feed a fourth component (the "voter") whose output, in turn, goes back to the en-
vironment. This portion of the architecture can be identified through questionnaires that elicit
components and data flow connections to whatever level of detail is appropriate or desired.

4.2 Behavior

To increase the reliability of the system, the three participants perform redundant (but not nec-
essarily identical) computations and the fourth component, the voter, chooses the "correct" re-
sult from the three components as the output from the system.5 Once the voter detects a faulty
participant, it ignores that participant from then on and continues operating with the remainder.
If the voter can not make a decision, the voter fail-stops. Once the function (or functions) of
each component is defined, this portion of the architecture identification can be carried out
through function-specific questionnaires eliciting additional details ("What kind of voting?"
"What kind of synchronization protocol?" "What kind of errors are detected?", etc.).

For example, consider the following two basic behaviors for the voter and their variants:

1. majority voting — The voter selects two out of three inputs or else selects two out of two
inputs (the non-failed participants must agree) or else shuts down (the system fails). Al-
though the three components take the same inputs and are expected to compute the
same values, they do not have to use the same algorithm. Variations include

- synchronous voting — The voter takes a periodic snapshot with period Tv and
makes the decision with whatever inputs it has. When the voter takes a
snapshot, it expects to see at least two identical inputs. A faulty participant
could send data at the wrong time or with the wrong value. These two types of
fault are indistinguishable to the voter.

5- This piece of information about the "semantics" of the system is not derivable from the structure diagram, yet
it affects the evaluation of the architecture. Another drastically different interpretation could be that three sep-
arate components process three separate data streams, all of which are required to update a common data
store that requires mutually exclusive access.

CMU/SEI-96-TR-036 11

- asynchronous voting — The voter waits for the inputs but has a timer interval to
detect missing inputs.

2. preference voting —The voter selects P1 if P1 is working; or it selects P2 if P2 is working;
or it selects P3 if P3 is working; or it shuts down (the system fails). Each input might have
a different definition of "working" (e.g., error detection condition). Variations include

- value error detection — The voter has a reasonableness test or the input data
comes with an error flag.

- time error detection — The voter has an interval timer to time-out.

In addition to the choices of component and voter behavior, availability of the system is affect-
ed by repair and reinsertion into service of failed components.

• repairs — Components are repaired as soon as the voter declares them failed. A repair
action takes some time to repair.

• no repairs — Components are not repaired.

12 CMU/SEI-96-TR-036

5 The Identification of the Hardware Resource Allocation
This principle requires that the evaluators collect information about the underlying computa-
tion, storage, and communication resources. These are necessary to the analysis because
they are consumed by or shared between software components. To the extent that hardware
resources are finite or fallible they will have an impact on the overall quality of the system.

The system under consideration is implemented with standard processors and local area net-
works. To simplify things, assume that we are not using shared memory multiprocessors—that
is, memories belong to a processor. Variations include

• independent — Each software component executes on a separate processor.

• shared — All software components execute in the same processor as schedulable units
of concurrency (i.e., process).6 Variations include the following:

- Priority of voter is higher than that of the participants.

- Priority of voter is lower than that of the participant's.
However, when the voter's priority is lower than the priority of the participants,
its behavior is sensitive to the behavior of the participants, and thus can be
influenced by aberrant participant behavior. This is inconsistent with the voter's
purpose to mask such behavior. A mixed processor allocation might be more
appropriate for this situation.

• mixed — The three participants share one processor; the voter uses a separate
processor. The three participants are schedulable units of concurrency within their shared
processor.

Although the number of resource allocation schemes is potentially unbounded, in reality, re-
sources are likely to be chosen from a small collection of commercial, off-the-shelf options.
The identification of the hardware resources and their allocation to software components can
be carried out through questionnaires and checklists that ask what resources (processors,
memory and storage devices, buses, networks) are used by each software component. It is
particularly important to identify shared resources, which might not be apparent from the de-
scriptions of the structure and behavior.

We're not making any distinctions between processes, tasks, or threads.

CMU/SEI-96-TR-036 13

^4 ~ " CMU/SEI-96-TR-036

6 The Analysis
This principle requires that the evaluators use the information gathered so far to determine if
the system will be able to fulfill its obligations. The goal of this analysis is to ensure that com-
ponents (hardware and software) cooperate in a manner that ensures that the system's obli-
gations are fulfilled. Analysis is performed from the point of view of the system. Part of the
analysis takes place during the contract identification, to ensure that the system expectations
and system obligations are stated in a manner that is unambiguous and consistent. Of course,
this assumes that the system will meet its obligations; this more detailed analysis is necessary
to verify that the system can fulfill each of its obligations.

Realizing that an architectural design is still a relatively high-level design, accurate prediction
might not be possible. However, the evaluation process will be useful in gaining insights into
the system and should continue to be used throughout the development. In the absence of
quantitative data, quantitative assumptions (or budgets) can be established and modified as

development progresses.

6.1 Example Analysis

For brevity, we will only consider the case of a synchronous majority voter on a shared proces-
sor in which the voter has higher priority than the participants and in which failed participants
are not repaired. During the identification of the contract, we would obtain a set of scenarios
that identify the attributes of interest, such as the following:

• The system failure rate is less than one failure/month (minimum reliability requirement).

• The system must process up to 20 input events per minute (throughput requirement).

• The environment expects the response time or latency of the system to be less than 100
milliseconds (worst-case latency requirement).

The goal of the analysis is to evaluate the quality attributes of the system reliability (Rs), laten-
cy (Ls), and throughput (Ts) by composing the attributes of the components and to compare
these values with the obligations/expectations of the system.

6.1.1 Reliability Analysis

Different reliability modeling techniques can be used depending on the operating assump-
tions. In environments where repairs are not feasible (the system fails when all redundancy is
exhausted) we can use combinatorial modeling techniques like reliability block diagrams and
fault trees to compute the reliability of the system, Rs. In environments where repairs are fea-
sible or where order of events (internal component or subsystem failures) matter, we must use
Markov models instead.

Reliability block diagrams work for simple cases, where components are either in series (all
must work) or parallel (at least one must work). In this example there are many possible reli-

CMU/SEI-96-TR-036 15

ability block diagrams, depending on the hardware resource allocation and the software archi-
tecture (structure and behavior of the software components).

An initial reliability block diagram could be deduced from the structure given that the reliability
of each component (Rp1, Rp2, Rp3, Rv) has been specified. If components share resources,
their reliabilities are not independent (they have common-mode failures) and the shared re-
sources must be represented in the block diagram. Finally, depending on the nature of the "vot-
ing," the system reliability can vary. For example, a majority voter requires agreement between
at least two components to determine the correct output; an averaging voter computes the av-
erage of the three inputs (perhaps subject to some "reasonability" test); a priority voter might
assign weights to different components (for example, the component executing the simpler or

better known algorithm might have a higher weight).

The reliability of the system is computed from the reliability of the components and their inter-
actions. Since there are no repairs, once the voter detects a faulty component, it ignores that
component from then on and, of course, expects the other two to agree from then on. If there
is a disagreement, the voter fail-stops. For simplicity, assume the three participants are iden-
tical, with the same reliability and all three participants execute on the same processor. The
reliability block diagram for this system is show in Figure 6-1.

TMR

nn
Voter Processor

n n LJ L-J

System

Figure 6-1: Reliability Block Diagram

If we assume that the time to failure is a random event, with exponential distribution, the reli-

ability of a component is given by

R (t) = e~ where X is the failure rate of the component.

The reliability of a triple-modular-redundant (TMR) system is [Trivedi 82]

2 3
RTMR^ = 3R'participant ^ ~^RParticipant ^

However, this does not take into account the reliability of the voter or the processor (both the
shared processor and the voter must be operating for the system to operate). Thus, to be pre-
cise, the reliability of the system is:

RSystenP = RProcessoP">XRVoter^XRTMR^

Notice that just having replicated components and a voter does not guarantee increased sys-
tem reliability. The function RTMR is not always greater than Rparticipant.For smal1 values of t,
RTMR is larger than Rparticipant> and for lar9e values of fit is the other way around. Jalote iden-
tifies this threshold at t0 = 0.7/A, [Jalote 94, page 36].

16 CMU/SEI-96-TR-036

6.1.2 Throughput Analysis

The throughput of a system can be calculated using schedulability theory and queueing mod-
els. If the voting execution time (Cv) < the voting interval (Tv) then the throughput in the syn-
chronous case is 1 vote per interval Tv and therefore 1 output per interval Tv since the voter
votes at its own rate independent of the rate at which the input arrives and independent of the

execution time of the participants.

Often average latency is a concern that accompanies throughput. For the case of periodic in-
put, the average latency is simply the sum of the average execution times of the voter and the
participants. For the case of stochastic input arrivals, assuming Poisson arrivals, the average
case latency is a function of the input arrival rate and the average execution time. Standard
M/G/1 queuing models can be used to calculate this.

Another potentially important issue is the relationship between input and output. For the syn-
chronous case, if there is to be a one to one correspondence between output and input, the
period of the voter must be equal to the input arrival period and Cm < Tm.

6.1.3 Worst-Case Latency Analysis

The latency of a system can be calculated using schedulability theory and queueing models.
Worst-case latency is measured from the time an input arrives to the time the output is sent.
If the voter's period is greater than the average interarrival time of the input and it votes on ev-
ery input, this situation will lead to progressively longer and longer latencies. Therefore, as-
sume that the voter's period is less than the average interarrival time of the input.

In the worst case, the voter preempts the execution of the participants before they have com-
pletely processed their inputs and another period of the voter will have to elapse before voting
processing commences. The worst-case latency in this case is Cp+Tv+Cv where Cp is the
combined execution time of all participants and Cv is the execution time of the voter.

If the voter is a period out of phase with the arrival of input, the worst-case latency is Tp+Cv

Therefore, the worst-case latency is max(Cp+Tv, Tp)+Cv.

CMU/SEI-96-TR-036 17

Ys CMU/SEI-96-TR-036

7 System Profiles and Software Architecture Trade-offs

As illustrated in previous sections, a system can be subject to various types of attribute-spe-
cific analysis. That is, for each quality attribute of interest we can apply a specific process to
analyze the system from that attribute's point of view. For a given contract, applying the anal-
ysis process to two different systems (i.e., systems that differ in software architecture or re-
source allocation) is likely to yield different results along some attribute specific metric, as
suggested in Figure 7-1.

Attribute value 11 H" Effect of change
on one attribute

i\.
Attribute value

Attribute-specific f
analysis '

Change in the
software architecture or
resource allocation

t Attribute-specific
analysis

-► System2 Systemj -^
Figure 7-1: Effect of Change on One Attribute

These analysis processes are not necessarily formal or quantitative; the process depends on
the attribute. Moreover, we do not expect that the various attribute-specific analyses will yield
results in some uniform or common units of quality. This is not a new problem, as Boehm ob-
served:

Finally, we concluded that calculating and understanding the value of a single
overall metric for software quality may be more trouble than it is worth. The
major problem is that many of the individual characteristics of quality are in
conflict; added efficiency is often purchased at the price of portability, accuracy,
understandability, and maintainability; added accuracy often conflicts with
portability via dependence on word size; conciseness an conflict with legibility.
Users generally find it difficult to quantify their preferences in such conflict
situations [Boehm 78, p. ix].

7.1 Conflicts Between Attributes
Building on Boehm's observations, we do not expect that the effect of a change in the resource
allocation or the software architecture can be so finely controlled that only selected attributes
change values while other attributes remain constant. As suggested in Figure 7-2, the effect
of a change is likely to affect multiple attributes.7

7
- To stress the diverse and not necessarily quantitative nature of the attributes, the icons in the figure suggest

attributes like weather (stormy, rainy, sunny), reading light (candle, bulb, moon), and expenses (increasing, de-
creasing, and oscillating). These are measured in different units and with different techniques.

CMU/SEI-96-TR-036 19

Attribute set 1 Effect of change Attribute set 2

&] t O \ I /J\on multiple attributes/"

dad
djd

Attribute-specific
architecture analyses

Systemj -<-

Change m the
software architecture or
resource allocation

f Attribute-specific
I architecture analyses

System2

Figure 7-2: Effect of Change on Multiple Attributes

Any parameter or piece of information obtained from the contract, the resource allocation, or
the software architecture that is used in the analysis of more than one attribute is a source of

conflicts between these attributes.

Changing the software architecture or the resource allocation to satisfy an obligation in the
contract might have consequences (good or bad) with respect to other obligations because all
the attributes affected by the changed feature might have different (better or worse) values.

For example, how we allocate processors to components has an effect on reliability (shared
processors are single points of failure), has an effect on throughput (each component only gets
the processor for a fraction of the time), and has an effect on latency (communications within
the same processor are faster than over a local-area network [LAN]). Changing the processor
allocation to decrease latency might also decrease throughput and reliability.

7.2 System Profiles
For a given contract, changes in the software architecture or the resource allocation might lead
to different collections of attribute values. The collection of attribute values, software architec-
ture, and resource allocation constitutes the profile of a system.

Profiles can be used as yardsticks to compare systems — one system is better than another
system if the former exhibits a better profile. In this case "better" could well be a qualitative,
subjective judgement (the emphasis is on satisficing rather than optimizing a set of require-
ments). The goodness of a profile is always relative to the contract; a profile might look better
under a less strict contract, and vice versa: it might look worse under a more strict contract.

Although we might lack precise control of individual quality attribute values, we could still
chose between system profiles, as suggested in Figure 7-3. By choosing among system pro-
files, we are in effect performing a trade-off between their respective software architectures.
Even a purely qualitative assessment of profiles would serve as a valuable guide in selecting
a software architecture.

20 CMU/SEI-96-TR-036

7.3 Need for Representative Examples

Obligations/
Expectations

Reliability,
throughput
latency.

Profile for
System 1

Profile for
System 3

Profile for
System 2

Hardware
resources

Software
architecture.

Hardware
resources

Software
architecture;

Figure 7-3: System Profiles and Architecture Trade-offs

Clearly there are an infinite number of combinations of contracts, hardware resource alloca-
tions and software architectures that could be analyzed. Our hope is that a relatively small
number of representative combinations can be used to flesh out the principles and to illustrate
the approach for various attributes. This is similar to the approach taken by the ESPRIT Project
CASCADE [CASCADE 93]. CASCADE deals with the assessment of safety critical sys-
tems—in particular, with the assessment of the software of safety critical systems. CAS-
CADE'S goal is to formulate a generalized assessment method for the railway and the
automotive sectors. Krebs describes gaps between safety standards and their applicability
[Krebs 95]. Some safety standards lack detail about applicable methods and measures to be
applied properly; other standards are too detailed and are not only large and complex but also
have a short life span; finally, measures recommended in standards are often of dubious effi-
cacy, unconfirmed by actual experience. The approach adopted in CASCADE is that stan-
dards should be generic and less complex, and that gaps in levels of detail could be closed by
the addition of well-tried, up-to-date examples, evaluated by multiple assessors.

CMU/SEI-96-TR-036 21

^ — ~CMU/SEI-96-TR-036

8 Conclusions
We suggest a set of principles that has the potential to unify techniques developed indepen-
dently by different communities of practitioners and researchers. The analysis techniques as-
sociated with each attribute provide the basis for generating scenarios, questions, and
checklists. The only information that needs to be gathered is the information that is needed to
perform the analysis. Thus, one practice that might emerge from this work is the development
of precise statements about (1) the type of information one could expect to see in a compo-
nent's "attribute specification," (2) the type of attribute obligations a component should be able
to make, and (3) the type of attribute compositions a component could be engaged in.

The principles outlined in this paper must be tested by conducting architecture evaluations of
real or proposed systems. As we gain experience with architecture evaluations, we might ex-
pect to see certain system profiles become more or less desirable, over a range of contracts
or contract types. Given a set of requirements (i.e., a collection of attribute values) we could
then identify candidate architectures (and resource allocations) to implement the system by
matching the requirements with the profiles in the library. Profile identification will then become
another principle to include into software evaluation practice.

Merriam-Webster's Collegiate Dictionary (Tenth Edition) defines method as "a systematic pro-
cedure, technique, or mode of inquiry employed by or proper to a particular discipline or art".
We are a long ways from that level of maturity in the practice but we hope that the experience
gained from these experiments will lead to the codification or formalization of systematic pro-
cedures—i.e., methods, for conducting attribute-based architecture evaluations.

The analysis techniques for each attribute will change over time.Thus, the methods will require
continuous updates, to keep up with current best practices. This is not different from other en-
gineering disciplines; when better information, materials, analysis, etc. become available, the
standards evolve. This is not to imply that the current generation of analysis techniques are to
be trusted or taken as gospel until something better comes along — there is some skepticism
about the benefits claimed by proponents of various software development methods [Fenton
93] and we might be in worse shape than imagined.

The problem of conflict highlighted by Boehm et al. is not going to disappear. However, since
one of the principles calls for the explicit identification of obligations and expectations at all lev-
els of decomposition of the system, we have a means to identify possible conflicts between
attributes. Any parameter used in the analysis of more than one attribute is a source of con-
flicts between those attributes. By being explicit about the parameters and the analyses that
use them, we are establishing a more methodical, reproducible approach to architecture eval-
uation and trade-off analysis.

CMU/SEI-96-TR-036 23

24 CMU/SEI-96-TR-036

References

Abowd 96

Barbacci 95

Boehm 78

CASCADE 93

Chudleigh 95

Fenton 93

IEEE-1061

Heimerdinger 92

Jahanian 86

Jain 91

Jalote 94

Jezequel 96

Kazman 96

Abowd, G. et al. Recommended Best Industrial Practice for Software Ar-
chitecture Evaluation (CM\J/SE\-96-TB-025). Pittsburgh, Pa.: Software
Engineering Institute, Carnegie Mellon University, 1996.

Barbacci, M.R., etal. Quality Attributes (CMU/SEI-95-TR-021). Pitts-
burgh, Pa.: Software Engineering Institute, Carnegie Mellon University,
1995.

Boehm, B. et al. Characteristics of Software Quality. New York: Elsevier
North-Holland Publishing Company, Inc., 1978.

"Certification and Assessment of Safety-Critical Application Develop-
ment" ESPRIT Project CASCADE-9032 [online]. Available WWW <URL:
http://www.newcastle.research.ec.org/esp-syn/text/9032.html> (1993).

Chudleigh, M. F. et al. "A Guideline for HAZOP Studies on Systems which
Include a Programmable Electronic System," 42-58. Proceedings of the
14th Int. Conference on Computer Safety, Reliability, and Security
(SAFECOMP95). Belgirate, Italy, October 11-13,1995. New York:
Springer, 1995.

Fenton, N. "How Effective Are Software Engineering Methods?" 295-305.
Proceedings ofAQUIS '93,2nd International Conference on Achieving
Quality in Software. Venice, Italy, October 18-20,1993. Pisa, Italy:
IEI-CNR, 1993.

IEEE Standard 1061-1992. Standard for a Software Quality Metrics Meth-
odology. New York: Institute of Electrical and Electronics Engineers,
1992.

Heimerdinger, W. L. & Weinstock, C. B. A Conceptual Framework for
System Fault Tolerance (CMU/SEI-92-TR-33, ADA264375). Pittsburgh,
Pa.: Software Engineering Institute, Carnegie Mellon University, 1992.

Jahanian, F. & Mok, A. "Safety Analysis of Timing Properties in Real-Time
Systems." IEEE Transactions on Software Engineering 12,9 (September
1986): 890-904.

Jain, R. The Art of Computer Systems Performance Analysis. New York:
Wiley, 1991.

Jalote, P. Fault Tolerance in Distributed Systems. New Jersey: Prentice
Hall, 1994.

Jezequel, J-M & Meyer, B. "Design by Contract: The Lessons of Ariane."
IEEE Computer 30,1 (January 1997): 129-130.

Kazman, R. et al. "Scenario-Based Analysis of Software Architecture."
IEEE Software 13, 6 (November 1996): 47-56.

CMU/SEI-96-TR-036 25

Klein 93

Krebs 95

Laprie 90

Laprie 92

MOD 95

Modarres 93

Shlaer 97

Slavin 93

Trivedi 82

Vincenti 90

Klein, M.H. et al. A Practitioners' Handbook for Real-Time Analysis:
Guide to Rate Monotonie Analysis for Real-Time Systems. Boston: Kluw-
er Academic Publishers, 1993.

Krebs, H. "Assessment on the Basis of Standards-Gaps and How to
Bridge Them," 12-23. Proceedings of the 14th Int. Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP95). Belgirate, Italy,
October 11-13,1995. New York: Springer, 1995.

Laprie, J.C. et al. "The Transformation Approach to the Modeling and
Evaluation of the Reliability and Availability Growth of Systems in Opera-
tion," 364-371. Proceedings of the 20th IEEE International Symposium on
Fault Tolerant Computing (FTCS-20). Newcastle Upon Tyne, UK, June
26-28,1990. Los Alamitos, Ca.: IEEE Computer Society Press, 1990.

Laprie, J.C., ed. Dependable Computing and Fault-Tolerant Systems.
Vol. 5, Dependability: Basic Concepts and Terminology in English,
French, German, Italian, and Japanese. New York: Springer-Verlag,
1992.

Draft Interim Defense Standard 00-58. "A Guideline for HAZOP Studies
on Systems which include a Programmable Electronic System." UK Min-
istry of Defense 1995.

Modarres, M. What Every Engineer Should Know about Reliability and
Risk Analysis. New York: Marcel Dekker Inc., 1993.

Shlaer, S. & Mellor, S.J. "Recursive Design of an Application-Indepen-
dent Architecture." IEEE Software 14,1 (January 1997): 61-72

Slavin, Lois. "Winning at Integration: Success Comes from Managing the
Process with Care." Enterprise 6, 4 (April 1993): 25-29.

Trivedi, K. S. Probability and Statistics with Reliability, Queuing, and
Computer Science Applications. Englewood Cliffs, N.J.: Prentice-Hall,
1982.

Vincenti, W. G. What Engineers Know and How They Know It. Baltimore:
The John Hopkins University Press, 1990.

26 CMU/SEI-96-TR-036

Appendix A Example Scenarios, Questionnaires,
and Checklists

Scenarios, checklists, and questionnaires can be used to identify the contract, the resource
allocation, and the software architecture. In this appendix we illustrate their use to identify two
kinds of information from the software architecture: fault propagation paths (identification of
faults and their effects on the system) and service paths (resources required to implement a

service).

These are important items to identify because the intersections of fault propagation paths and
service paths are sources of risk (e.g., the system might crash). The risk is reduced if there
are redundant service paths, if faults can be detected and contained, if faulty components can

be replaced, etc.

A.1 Fault Propagation Paths

Faults are undesirable states, events, or conditions that propagate between components of the
system. A failure occurs when a fault arrives at the system boundary (i.e., the system has been
unable to prevent its propagation to the boundary).

Using fault propagation scenarios, checklists and questionnaires, the evaluators can propose
a specific set of faults and assess their effects on the system. The information developed in-
cludes the failure types, the pattern of failures, and the detection, containment, and recovery
actions available. Most of the cases we list in the following illustrations are derived from
Heimerdinger and Laprie [Heimerdinger 92, Laprie 92].

A.1.1 Failure Types

There are several types of failure scenarios to consider.

Timing failures —Timing failures occur when the timing of a service delivered to the environ-
ment does not meet a system's obligation. Timing failures are expressed as deviations in time,
such as, the event signaling the start/end of the delivery of a service is earlier, later (or "never")
than the correct time.

Value failures—Value failures occur when a value delivered to the environment does not meet
a system's obligation. Value failures are expressed as deviations in value, such as the comput-
ed value is smaller, or larger than the correct value, the distribution of computed values is dif-
ferent from the distribution of the correct value, etc.

Resource failures — Resource failures occur when the use of a resource does not meet a sys-
tem's obligation. Resourse failures are expressed as deviations in resource utilization, such
as, the resource is overused, underused, exhausted, etc.

CMU/SEI-96-TR-036 27

A.1.2 Pattern of Failure

Patterns of failure are expressed in terms of time of occurrence of events, duration of condi-
tions, distribution or variability of timing and duration, etc. It helps to know how often we need
to deal with a fault because containment or repair might consume resources and degrade ser-
vices, in violation of system obligations. Question to consider include

• Can we determine the immediate cause of the fault or fault activator?

• Is the fault attributable to a single component or resource, or to an interaction between
components and resources?

• What is the duration and pattern of the fault activation? Is the fault permanent or transient?
Is the fault periodic or aperiodic?

• How fast does a fault propagate and cause a failure? How long does it stay dormant in the
propagation chain as it goes from active to dormant to active, etc.?

• Which components or resources are affected by the propagation and in what order?

A.1.3 Detection Actions

Detection actions are expressed in terms of the types of faults observable in different compo-
nents or resources. Faults can change their type as they propagate (e.g., a value fault injected
into a component might emerge later on as a timing fault). Different types of failures violate
different obligations and expectations. It helps to know the type and location where can the
fault be detected because there might be alternative strategies for containment and repair.

Questions to consider include

• How is a fault transformed as it propagates between components? How does it change
from a {timing, value, resource} fault to a {timing, value, resource} fault?

• Does a fault always propagate and becomes a failure and does the failure always manifest
itself in the same way, to all the observers in the environment? Cases to consider include

- It may disappear with no perceptible effect.

- It may remain in place with no perceptible effect.

- It may lead to a sequence of additional faults that result in a failure (propagation
to failure).

- It may lead to a sequence of additional faults with no perceptible effect on the
system (undetected propagation without failure).

- It may lead to a sequence of additional faults that have a perceptible effect on
the system (detected propagation without failure).

A.1.4 Containment and Recovery Actions

Containment and recovery actions are expressed in terms of locality, degradation of service,
and cost of repair. Containment or repair actions can have profound effects on system struc-
ture, behavior, and resource utilization. It helps to know what containment or repair actions can
occur because both during the repair and afterwards the system might be degraded and cer-
tain obligations might not be met. Questions to consider include

28 CMU/SEI-96-TR-036

• Is there built-in redundancy in space? Can we repeat work hoping that fault activations
are localized and don't affect all components/resources the same way?

• Is there built-in redundancy in time? Can we repeat work hoping that fault activations are
transient and don't affect the same components/resources?

• Is there redundancy in source of time? What kind of clocks, interval timers, protocols are
in use?

• Are there fault containment regions? Can we contain value faults by limiting
communication and replicating components (i.e., make regions self-contained, with fewer
common-mode faults)? Can we contain resource faults by eliminating shared resources?
Can we contain timing faults by ignoring an event that should not have happened,
generating a missing event, or combining these two to achieve the effect of delaying an
early event?

• Is there service degradation? What is the remaining capability to deliver each service?
what components/resources are needed to support remaining capability? What services
can disappear /persist/reappear?

• Is there fault recovery? What is being repaired or masked? Is the fault removed or is the
fault activation suppressed? What is the permanency of the repair action?. Is a fault fixed
permanently, not just made dormant albeit for a large amount of time (temporary repair)?

• What is the nature of the repair action? Is it forward recovery, backward recovery,
compensation, or masking? What components and resources are needed to execute the
repair actions? What is the mean time to repair? How long does it take to execute the
repair action?

• Are there fault-free, predictable, consistent states? Can we bring the system to a safe
state to replace the component? Can we replace the component at a random time to
handle a detected fault?

• Who makes the decision to replace a failed component? Is it the component itself, some
central controller, negotiation among other components? If multiple components must
agree, which technique is used?

A.2 Service Paths

Performance is the by-product of how resources are allocated and consumed to implement a
service. Using scenarios, checklists, and questionnaires the evaluators can identify the re-
sources, the resource consumers, and the allocation or mapping of consumers to resources
required to implement a service.

Resource consumers — processes and messages. Resource consumers are initiated by
events that propagate through the software architecture.

Resources — processors, storage, networks. As events propagate through the software archi-

tecture they use such resources.

Resource allocation/mapping — how consumers are mapped onto resources such as process
allocation and process prioritization. Inevitably competition for resources arises, and thus re-
sources must be judiciously allocated to respond to events while meeting performance re-

quirements.

CMU/SEI-96-TR-036 ~~ 29

A performance checklist identifies the types of performance attributes the system will have to

exhibit

latency—What is the window of time in which the response to an event must occur? What
is the severity of the consequences of not meeting the requirement (i.e., not completing
within the response window)?

jitter — What is the allowable tolerance for deviation from an event prescribed to be
generated periodically? Ideally, the event will occur precisely at some point in time.

precedence — What events are interdependent and what is the dependence (i.e., what
events are constrained to occur in some specified order and potentially with latency
requirements between them)?

throughput — How many events per unit time need to be responded to? What is the
interval over which throughput must be maintained for each applicable event?

capacity — How much demand can be placed on the system while continuing to meet
latency and throughput requirements? Demand can be thought of in terms of utilization,
number of event stream, etc.

Since performance requirements can vary over time, a performance checklist should also
identify the various modes of operation and levels of operation.

• List significant modes of operation. How can the demand change over time? How can
resources and resource topology change over time?

• List significant levels of performance. What happens when system capacity is exceeded
and not all events can be responded to in a timely manner? Are there levels of
degradation?

A.2.1 Resource Consumers

Resource consumption is determined by the nature of the software concurrency architecture
and the nature of the system event arrivals. Items to include in resource consumer checklists

include:

• Identify previously made decisions that impact performance. Are there pre-specified
hardware components (e.g., processors, buses)? Are there pre-specified software
components (e.g., OS, compiler)? Are there previously made design decisions (e.g.,
concurrency decisions, synchronization mechanisms)?

• Identify the processes involved in the thread.

• Identify embedded processes. If the component is not a process, does it contain a
process or does it execute on a different resource than others in the thread? How are
modules (e.g., objects, subprograms) mapped to processes.

• List characteristics of each process that impact performance. What is the priority
assignment of each process? What are the estimated execution times for each process?
What resources are needed (i.e., which CPU)? Can the resource be used atomically (i.e.,
non-preemptable sections)?

• Identify interrupts, interrupt handlers, and their priorities. Can interrupts be masked? How
long?

30 CMU/SEI-96-TR-036

• Identify connections between processes for every process in the response thread. Are the
connections synchronous or asynchronous? Is there transfer of data or control? What
resources are needed (e.g., CPU, LAN, bus)? What is the estimated execution time
(resource usage)?

• Identify points in which more than one response thread must synchronize. Is
synchronization necessary? Does synchronization involve coordinating the use of a
resource? What synchronization protocols are used and what are their characteristics?
What interprocess communication mechanisms are used and what are their
characteristics?

• Identify event streams. An event stream is a sequence of events from the same source.

• Identify the arrival pattern of each stream. Is is periodic, sporadic or stochastic? What are
the worst-case and steady-state patterns?

• Identify the thread through the architecture for each event stream. What components and
connections are traversed by the events? What processes and messages are required to
respond to each event?

A.2.2 Resources

Items to include in resource checklists include generic characteristics for all resources: speed,
amount, allocation units, allocation policy as well as resource-specific characteristics that im-
pact performance:

• CPU — scheduling discipline, number of priority levels, clock granularity, sources of OS
overhead, sources of OS-induced blocking, maximum duration of masked interrupts,
maximum duration of non-preemptable sections, Interrupt levels for various types of
interrupts, processor speed, etc.

• storage — nature of the mutual exclusion mechanism, shared memory, virtual memory,
process address space description, address space protection

• network — type of network, network bandwidth

A.2.3 Resource Allocation/Mapping

Items to include in resource allocation/mapping checklists include

• Identify the resources needed by each process/message.
• Identify any constraints on process/message allocation.

• Identify how processes/messages are allocated to processors.

• Estimate how much of each resource is used by each stream.

CMU/SEI-96-TR-036 31

32 CMU/SEI-96-TR-036

Appendix B Glossary of Quality Terms1

accidental faults — faults created by chance.

active fault — a fault which has produced an error.

aperiodic — an arrival pattern that occurs repeatedly at irregular time intervals. The frequency
of arrival can be bounded by a minimum separation (also known as sporadic) or can be com-

pletely random.

attribute specific factors — properties of the system (such as policies and mechanisms built
into the system) and its environment that have an impact on the concerns

availability — a measure of a system's readiness for use.

benign failure — a failure that has no bad consequences on the environment.

Byzantine failure — a failure in which system users have differing perceptions of the failure.

capacity — a measure of the amount of work a system can perform.

catastrophic failure — a failure that has bad consequences on the environment it operates

in.

complex interactions — those of unfamiliar sequences, or unplanned and unexpected se-
quences, and either not visible or not immediately comprehensible.

component coupling — the extent to which there is flexibility in the system to allow for un-
planned events. Component coupling ranges from tight (q.v.) to loose (q.v.)

confidentiality — the non-occurrence of the unauthorized disclosure of information.

consistent failure — a failure in which all system users have the same perception of the fail-

ure.

criticality — the importance of the function to the system.

dependability — that property of a computer system such that reliance can justifiably be
placed on the service it delivers.

dependability impairments — the aspects of the system that contribute to dependability.

dormant fault — a fault that has not yet produced an error.

error — a system state that is liable to lead to a failure if not corrected.

event — a stimulus to the system signaling the need for the service.

1- This glossary is taken from Quality Attributes, Barbacci, et al., pp. 47-51 [Barbacci 95].

CMU/SEI-96-TR-036 ~~~ 33

event stream — a sequence of events from the same source—for example, a sequence of

interrupts from a given sensor.

Event Tree Analysis (ETA) — a technique similar to Fault Tree Analysis. Starting with some
initiating (desirable or undesirable) event, a tree is developed showing all possible (desirable
and undesirable) consequences.

fail-safe — a system which can only fail in a benign manner.

fail-silent — a system which no longer generates any outputs.

fail-stop — a system whose failures can all be made into halting failures.

failure — the behavior of a system differing from that which was intended.

Failure Modes and Effects Analysis (FMEA) — a technique similar to Event Tree Analysis
(ETA). Starting with potential component failures, identifying its consequences, and assigning
a "risk priority number" which can be used to determine how effort should be spent during de-

velopment.

Failure Modes, Effects, and Criticality Analysis (FMECA) — an extension of Failure Modes
Effects Analysis (FMEA) that uses a more formal criticality analysis.

fault — the adjudged or hypothesized cause of an error.

fault avoidance — see fault prevention.

fault forecasting — techniques for predicting the reliability of a system over time.

fault prevention — design and management practices which have the effect of reducing the
number of faults that arise in a system.

fault removal — techniques (e.g., testing) involving the diagnosis and removal of faults in a

fielded system.

fault tolerance — runtime measures to deal with the inevitable faults that will appear in a sys-

tem.

Fault Tree Analysis (FTA) — a technique to identify possible causes of a hazard. The hazard
to be analyzed is the root of the tree and each necessary preconditions for the hazard or con-
dition above are described at the next level in the tree, using AND or OR relationships to link
subnodes, recursively

halting failure — a special case of timing failure wherein the system no longer delivers any
service to the user.

hazard — a condition (i.e., state of the controlled system) that can lead to a mishap.

34 CMU/SEI-96-TR-036

Hazard and Operability Analysis (HAZOP) — evaluates a representation of a system and
its operational procedures to determine possible deviations from design intent, their causes,

and their effects.

human-made faults — those resulting from human imperfection.

impairments to dependability — those aspects of the system that contribute to how the sys-
tem (mis)behaves from a dependability point of view.

inconsistent failure — see Byzantine failure.

integrity — the non-occurrence of the improper alteration of information.

intentional faults — faults created deliberately, with or without malicious intent.

interaction complexity — the extent to which the behavior of one component can affect the
behavior of other components. Interaction complexity ranges from linear (q.v.) to complex

(q.v.).

interlocks — implementation techniques that prescribe or disallow specific sequences of

events.

intermittent faults — a temporary fault resulting from an internal fault.

internal faults — those which are part of the internal state of the system.

jitter — the variation in the time a computed result is output to the external environment from
cycle to cycle

latency — the length of time it takes to respond to an event.

latency requirement — time interval during which the response to an event must be execut-
ed.

latent error — an error which as not yet been detected.

linear interactions — interactions that are in expected and familiar production or mainte-
nance sequence, and those that are quite visible even if unplanned.

lockins — implementation techniques that lock the system into safe states.

lockouts — implementation techniques that lock the system out of hazardous states

loose coupling — characterizes systems in which processes can be delayed or put in stand-
by; sequences can be modified and the system restructured to do different jobs or the same
job in different ways; they have "equifinality"—many ways to reach the goal.

maintainability — the aptitude of a system to undergo repair and evolution.

CMU/SEI-96-TR-036 35

methods — how concerns are addressed: analysis and synthesis processes during the de-
velopment of the system, procedures and training for users and operators.

mishaps — unplanned events that result in death, injury, illness, damage or loss of property,

or environment harm.

mode — state of a system characterized by the state of the demand being placed on the sys-
tem and the configuration of resources used to satisfy the demand.

observation interval — time interval over which a system is observed in order to compute

measures such as throughput.

performance — responsiveness of the system—either the time required to respond to specif-
ic events or the number of events processed in a given interval of time.

performance concerns — the parameters by which the performance attributes of a system

are judged, specified, and measured.

performance factors — the aspects of the system that contribute to performance.

periodic — an arrival pattern that occurs repeatedly at regular intervals of time.

permanent fault — a fault which, once it appears, is always there.

physical faults — a fault that occurs because of adverse physical phenomena.

precedence requirement — a specification for a partial or total ordering of event responses.

processing rate — number of event response processed per unit time.

quality — the degree to which software possesses a desired combination of attributes (e.g.,

reliability, interoperability) [IEEE 1061].

reliability — a measure of the rate of failure in the system that renders the system unusable.
A measure of the ability of a system to keep operating over time.

response — the computation work performed by the system as a consequence of an event.

response window — a period of time during which the response to an event must execute;
defined by a starting time and ending time.

safety — a measure of the absence of unsafe software conditions. The absence of cata-
strophic consequences to the environment.

safety indicators — the aspects of the system that contribute to safety.

schedulable utilization — the maximum utilization achievable by a system while still meeting

timing requirements.

36 CMU/SEI-96-TR-036

security factors — the aspects of the system that contribute to security.

service — a system's behavior as it is perceived by its user(s).

Software Fault Tree Analysis (SFTA) — an adaptation to software of a safety engineering
analysis methodology. The goal of SFTA is to show that the logic contained in the software
design will not cause mishaps, and to determine conditions that could lead to the software con-
tributing to a mishap.

spare capacity — a measure of the unused capacity.

temporary fault — a fault which disappears over time.

throughput — the number of event responses that have been completed over a given obser-
vation interval.

tight coupling — characterizes systems that have more time-dependent processes: they
cannot wait or stand by until attended to; the sequences are more invariant and the overall
design allows for very limited alternatives in the way to do the job; they have "unifinality"—one
unique way to reach the goal.

timing failure — a service delivered too early or too late.

transient fault — a temporary fault arising from the physical environment.

user of a system — another system (physical or human) which interacts with the former.

utilization — the percentage of time a resource is busy.

value failure — the improper computation of a value.

CMU/SEI-96-TR-036 37

^ ~~ ~~ CMU/SEI-96-TR-036

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

'ublic reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
leaded, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden,
o Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Hiperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

March 1997
3. REPORT TYPE AND DATES COVERED

Final
I. TITLE AND SUBTITLE

Principles for Evaluating the Quality Attributes of a Software Architecture
5. FUNDING NUMBERS

C —F19628-95-C-0003

>. AUTHOR(S)

Mario R. Barbacci, Mark H. Klein, Charles B. Weinstock

'. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-96-TR-036

). SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-96-036

1. SUPPLEMENTARY NOTES

2.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

3. ABSTRACT (maximum 200 words)

Software quality is the degree to which software possesses a desired combination of attributes (e.g., reliability,
interoperability). In this paper we describe a few principles for analyzing a software architecture to determine if it exhibits
certain quality attributes. We show how analysis techniques indigenous to the various quality attribute communities can
provide a foundation for performing software architecture evaluation. We also show how the principles provide a context for
existing evaluation approaches such as scenarios, questionnaires, checklists, and measurements. Our immediate goal in
identifying these principles for attribute-based architecture evaluation is to better integrate existing techniques and metrics
into software architecture practice, not necessarily to invent new attribute-specific techniques and metrics. A longer-term
goal is to codify these principles into systematic procedures or methods for architecture evaluation. This paper is an initial
step towards identifying the ingredients of such methods.

1 SUBJECT TERMS

attribute-based architecture evaluation, quality attributes, software architectures, software
quality

15. NUMBER OF PAGES

38 pp.

16. PRICE CODE

7. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
3N 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

